Classroom Activities with the AMSAT CubeSat Simulator

Fredric Raab, KK6NOW Adjunct Faculty College of the Desert, Palm Desert, CA fraab@collegeofthedesert.edu

CubeSatSim.org

Topics

Who is AMSAT?

Use of Amateur Radio by Educational CubeSats

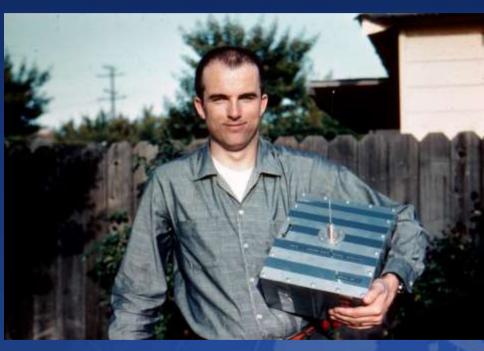
CubeSat Simulator

Classroom Activities

Acknowledgements

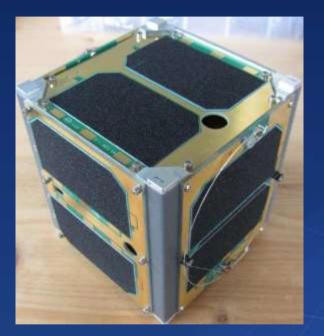
■ Q & A

Who is AMSAT?


The Radio Amateur Satellite Corporation, or AMSAT, is a worldwide, volunteer, not for profit educational and scientific organization that has been designing, building and lauching small satellites for more than a half century.

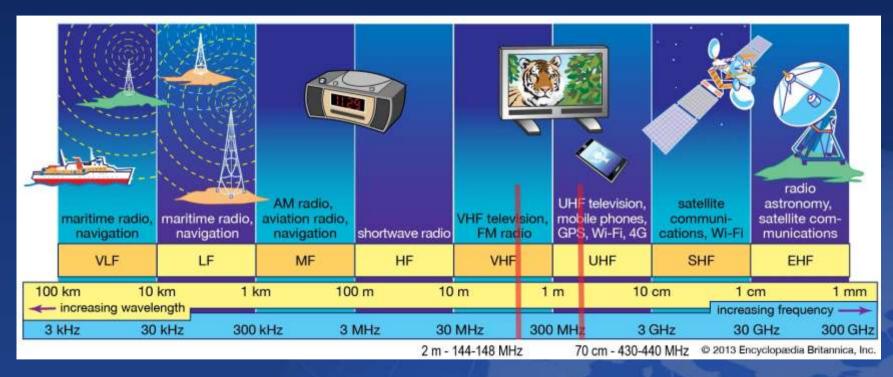
These satellites have typically been used by amateur radio operators for voice communications.

Some included digital packet communications and slow scan television


OSCAR Orbiting Satellite Carrying Amateur Radio

Lance Ginner, K6GSJ with OSCAR 1 launched 1961

FOX Series – **Five 1U CubeSats**

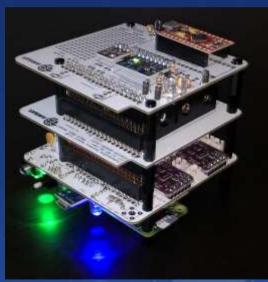


First launched Oct 2015 & Nov 2017 All carried experimental university payloads.

Use of Amateur Radio by Educational CubeSats

Use of Amateur Radio by Educational CubeSats

Phase rule that for performance reasons, join a stabilitize may not by real time.


What is a CubeSatSim?

A low-cost (\$350) satellite emulator that runs on solar panels in sunlight, batteries in eclipse, and transmits UHF radio telemetry using the most commonly used transmission modes and protocols.

What is a CubeSatSim?

Uses a 3-board stack that contains a Raspberry Pi single board computer, an Arduino compatible microcontroller, rechargeable batteries, voltage/current sensors, and environment sensors.

CubeSatSim Features

- Two processors: flight & payload
- Six solar panels, each with voltage & current monitoring
- Expandable payload via I2C sensors
- Raspberry Pi camera
- UHF radio using 5 telemetry modes
- Open Source hardware and software
- Open Source Raspberry Pi / RTL-SDR ground station
- Loaners available for educations and demonstrators

Main Board

- Plugs into Rasberry Pi Zero
- 8 Voltage/Current Sensors
- 1 Charge Controller for Batteries
- 1 Boost Converter/Regulator

CubeSatSim Project

11

Battery Board

- 3 AA/AAA Nickel Metal Hydride (NiMH) Batteries for safety
- Can operate in demo mode for 3 hours
- Charged with USB-C cable

STEM Payload Board


- -1 Arduino compatible microcontroller
- -1 Temperature/Pressure/Humidity Sensor (BME-280)
- -1 3-Axis Accelerometer/Gyroscope (MPU-6050)

STEM Payload Board

- Extendable via QWIIC boards from Sparkfun & Adafruit

Ground Station Software

FoxTelem for Windows, Mac & Linux receives, decodes, visualizes and records telemetry data from Fox CubeSats via a \$35 RTL-SDR

File Decad	ier Spacecraft Help	
input	CubeSatSim-BPSK CubeSatSim-FSK	
Source E4000 USI	FSR: # DIVV C High Speed C DIVE + HS BPSR: C FinalHooley C Gelf Step: HI See: + C AF # 13 Center Frequency A34040.0 kHz Betwee removing (Sudich modes) SOR Sample Rate: 0.240 HHz Freq Correction (ppm3) 0 + Gain Master: Aidto • Miser: + LNA:	Spacecraft Tracked 3/CubeSatSim-BPSK Tracked 1/CubeSatSim-FSK Met Tracked 2/Anth View Audio Options 9/ View Filtered Audio 9/ Monitor Filtered Audio 9 Squetch when no telemetry
Output	Monitor Audia b1 (default) -	
T.A		Fiel Digram
21 - 90 - 75 - 100- 3472	FFT: 2048 CubeSation 5 404750 434775 434800 404825 434850 434875 434	ann 10.4dE Datom Cartan
Show O P	wak 🕷 SNR Find Signal when peak over 12.0 dB, SNR over 2.5 dB and bit SNR over 1.0 dB	

Ground Station Software

Ground Station

- Pre-built Software Stack (Fox-in-a-Box)
- -Or, install on your own PC

Software: FoxTelem Direwolf QSSTV OpenWebRX RTL-TCP Gpredict KLATracker

Loaner Kits Available

Includes CubeSat Simulator, ground station, turntable, LED lamp

Classroom Activities

Classroom Activities

- CubeSat Radio Communications
- Solar Cells & Power Management
- CubeSat Orientation & Spin Rates
- STEM Payload Sensors
- Software Enhancements

CubeSat Radio Communications

Blinks	Mode	Description	Decoding	Command	Audio	Waterfall (Cubic SDR)
1	APRS	Automatic Packet Reporting System. This digital mode sends a packet of data with AFSK or Audio Frequency Shift Keying modulation.	Windows: <u>SoundModem</u> or <u>Direwolf</u> Raspberry Pi/Linux: <u>OpenWebRX</u> or <u>Direwolf</u> with spreadsheet http://cubesataim.org/telem	config -a	CubeSatSim.org/a	49439 4345902
2	FSK	Frequency Shift Keying. This mode transmits a continuous signal that makes a rumbling sound that emulates the AMSAT Fox CubeSats such as Fox-1C or AO-95. Also known as DUV or Data Under Voice.	Windows/Raspberry Pi/Linux: FoxTelem	config -f	CubeSatSim.org/	444 4444 4444 4444 4444 4444 4444 4444 4444
3	BPSK	Binary Phase Shift Keying. This mode transmits a continuous signal that sounds like noise that emulates the AMSAT Fox-1E or HuskSat-1 CubeSats. You need to demodulate using USB.	Windows/Raspberry Pi/Linux: <u>FoxTelem</u>	config -b	CubeSatSim.org/h	4495 4493
4	SSTV	Slow Scan TeleVision. This mode transmits stored images in Scottie 2 format which sounds like a series of tones.	Windows: MMSSTV Raspberry Pi/Linux: QSSTV	config -s	CubeSatSim.org/s	Gisol
5	cw	Continuous Wave or Morse Code. This mode transmits a FM modulated tone at 20 words per minute Morse Code telemetry.	Windows/Raspberry Pi/Linux: fldigi with spreadsheet http://cubesatsim.org/t elem	config -m	CubeSatSim.org/m	4943

Solar Cells & Power Management

- Measure and record differences in solar panel output
- Measure battery voltages and currents
- Measure power consumption and generation under different levels of sunlight
- Determine when processor will shutdown
- Determine how long CubeSat will operate in eclipse
- Observe voltage and current changes as CubeSat enters and leaves eclipse
- Determining solar panel failures or performance issues

CubeSat Orientation & Spin Rates

- Determine orientation using accelormeter
- Determine orientation using solar cells
- Determine spin rate using gryoscope
- Determine spin rate using solar cells
- Determine camera direction
- Simulate mission scenarios

STEM Payload Sensors

Additional sensor support via QWIIC

- IR / UV sensors
- Environmental
- On-board sensor processing
- GPS support

Software Enhancements

- Flight Software
 - Power sensor calibration
 - Active power management (transmitter control)
 - Automatic communications mode switching
 - Improved camera scheduling
 - On-board storage of sensor data
 - Scheduled transmission of sensor data

CubeSatSim Project Team

Leadership

Alan B Johnson, PhD, KU2Y VP, Educational Relations, AMSAT

Hardware

- Jim McLaughlin, KI6ZUM
- David White, WD6DRI

Educational Materials

- Paul Graveline, K1YUB
- Fredric Raab, KK6NOW
- Mark Samis, KD2XS
- David White, WD6DRI

- Beta Builders
- Kerry Bonin, KJ7HTG
- Jim Nagle, KF4OD
- Virginia Smith, NV5F
- Chris Thompson, G0KLA/AC2CZ
- Randy Standke, KQ6RS,
- Christine Mehner, MD, PhD, KO4EWG
- Sopwith, N1SPW
- Kai Ji, AC3EN
- Documentation
- Alan B Johnson, PhD, KU2Y
- Sopwith, N1SPW

Students

- Villanova University, Villanova, PA CubeSat Club and Spring 2019 and 2022 ECE 1205 Freshman Projects classes
- Bishop O'Connell High School, Arlington, TX DJO ARC students and teacher Melissa Pore, KM4CZN

CAD

- Lindsay White, KI6LZN
- Low Pass Filter Design and Testing
- Randy Standke, KQ6RS

Acknowledgements

Thanks to Mark Spencer, WA8SME, for his trailblazing work on CubeSat simulators and to Bob Bruninga, WB4APR, for ideas and inspiration from his undergrad "LabSat" developments.

- Pat Kilroy, N8PK, was instrumental in getting the CubeSat Simulator project going again.
- We would also like to acknowledge all the open source hardware and software that is a part of the AMSAT CubeSatSim.
- Photos from CubeSatSim.org and AMSAT.org websites

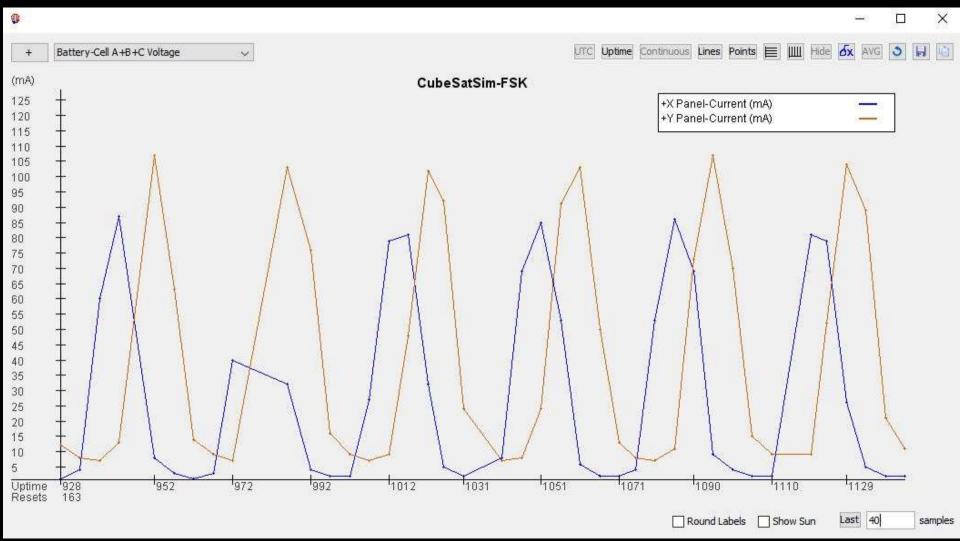
Finally, we would like to acknowledge the support of the AMSAT Board of Directors and the members of AMSAT for their support and encouragement of this project.

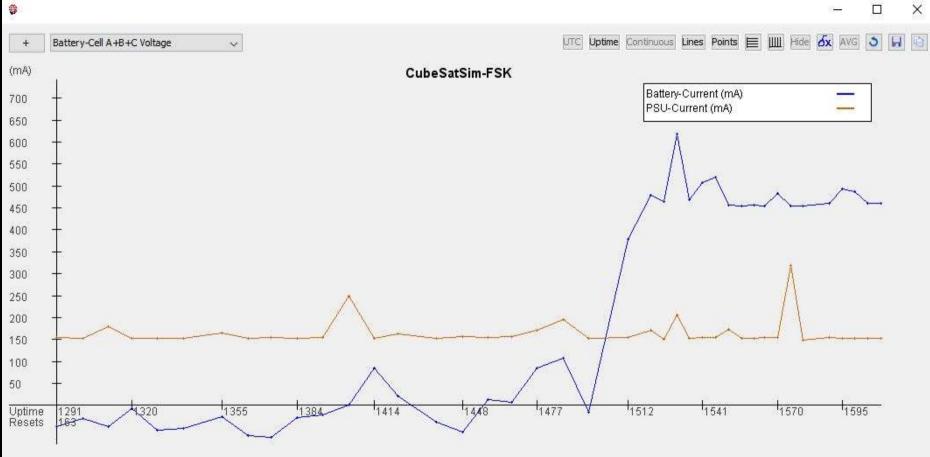
Contact Fredric at fraab@collegeofthedesert.edu or FredricRaab@yahoo.com

https://CubeSatSim.org

https://www.amsat.org

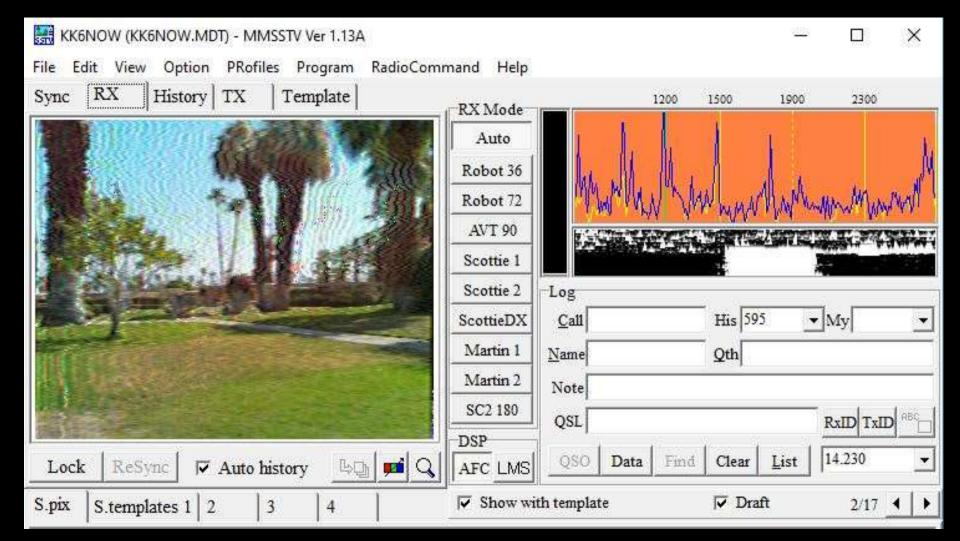
https://github.com/alanbjohnston/CubeSatSim/wiki



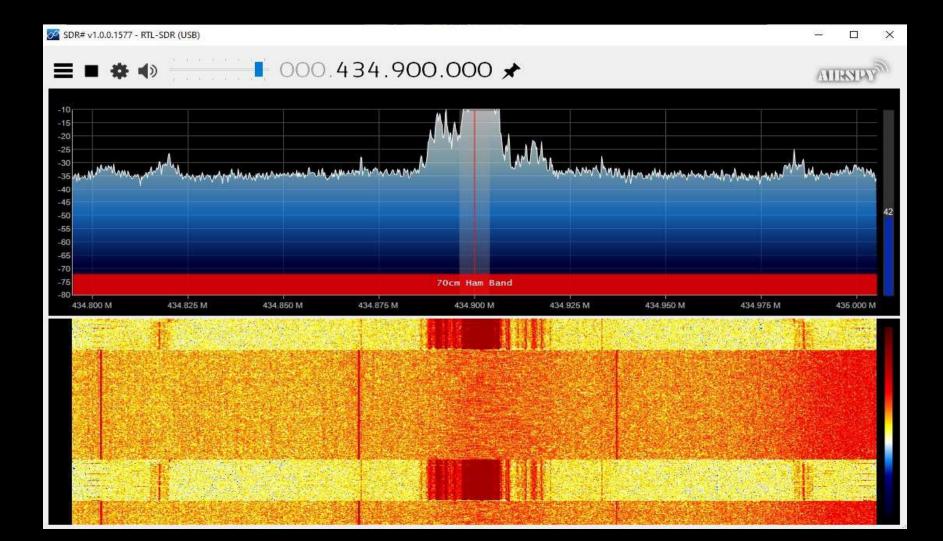


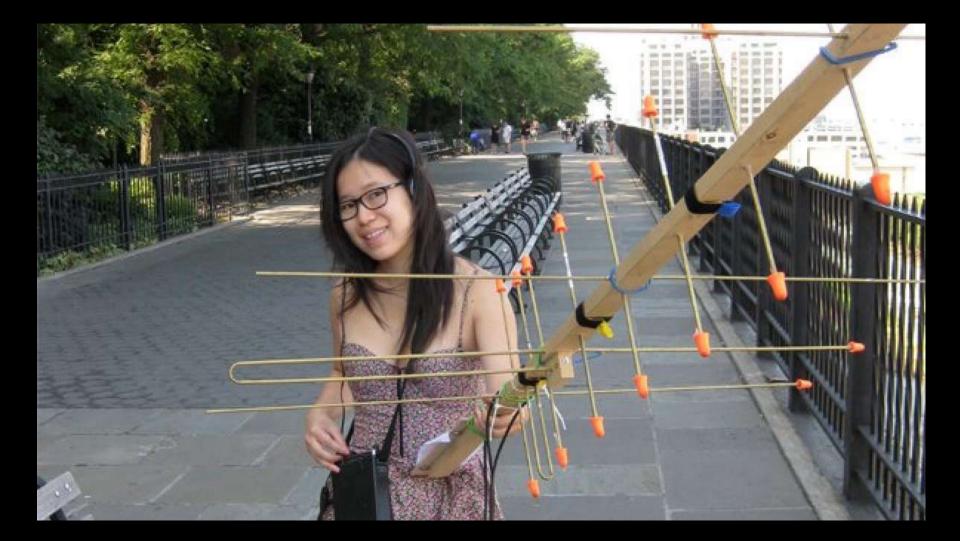
Input	AO-85	A0-91	A0-92	AO-95	CubeSatSim-BPSK	CubeSatSim-FSK	Fox-1E	Husky	
Health	Measureme	ents							

Padio				Computer Hardware				Min: Resets: 153 Uptime: 374 Computer Software				
Radio RSSI (dBm) TX Antenna RX Antenna	RT 0 Deploy Stowed		MAX 0	IHU Temp (Pi) (C) I2C Bus 1 I2C Bus 3 Camera	RT 36.9 ОК ОК ОК	MIN 34.7	MAX 35.8	Spacecraft Spin (rpm Safe Mode Ground Commands Simulated Telemetry	RT) 0.0 OFF 0	MIN 0.0	MAX 0.0	
				- .				Experiments				
Battery Cell A+B+C Voltage Current (mA)	RT . 8.27 26.0	MIN 7.15 471.0	MAX 8.35 115.0	PSU Voltage (V) Current (mA)	RT 4.96 158.0	MIN 4.78 144.0	MAX 4.96 200.0	STEM Payload Status BME280 Temp (C) BME280 Pressure (BME280 Altitude (m) BME280 Humidity (% Diode Temp (C) Sensor 2 (signed s	0.0 0.0 0.0 0.0 0.0 107.3	MIN 0.0 0.0 0.0 105.3 0.0	MAX 0.0 0.0 0.0 0.0 107.3 0.0	
+X Panel				+Y Panel				+Z Panel				
Voltage (V) Current (mA) Rotation (dps) Acceleration (g)	RT 4.38 91.0 6 -0.09	MIN 1.42 0.0 7 -0.06	MAX 4.40 92.0 7 -0.03	Voltage (V) Current (mA) Rotation (dps) Acceleration (g)	RT 4.40 13.0 1 -0.01	MIN 3.19 2.0 0 -0.01	MAX 4.52 111.0 1 0.01	Voltage (V) Current (mA) Rotation (dps) Acceleration (g)	RT 0.00 0.0 9 1.06	MIN 0.00 0.0 0 1.06	MAX 0.00 0.0 11 1.08	
-X Panel				-Y Panel			11	-Z Panel				
Voltage (V) Current (mA)	RT 4.34 3.0	MIN 1.99 0.0	MAX 4.47 72.0	Voltage (V) Current (mA)	RT 3.29 10.0	MIN 0.92 0.0	MAX 3.36 82.0	Voltage (V) Current (mA)	RT 4.34 72.0	MIN 2.33 0.0	MAX 4.40 118.0	



-




Last 40

samples

Blinks	Mode	Description	Decoding	Command	Audio	Waterfall (Cubic SDR)
1	APRS	Automatic Packet Reporting System. This digital mode sends a packet of data with AFSK or Audio Frequency Shift Keying modulation.	Windows: <u>SoundModem</u> or <u>Direwolf</u> Raspberry Pi/Linux: <u>OpenWebRX</u> or <u>Direwolf</u> with spreadsheet http://cubesatsim.org/telem	config -a	CubeSatSim.org/a	494.89 434.902 434.902
2	FSK	Frequency Shift Keying. This mode transmits a continuous signal that makes a rumbling sound that emulates the AMSAT Fox CubeSats such as Fox-1C or AO-95. Also known as DUV or Data Under Voice.	Windows/Raspberry Pi/Linux: FoxTelem	config -f	CubeSatSim.org/f	34.89 43490 43491 434,903
3	BPSK	Binary Phase Shift Keying. This mode transmits a continuous signal that sounds like noise that emulates the AMSAT Fox-1E or HuskSat-1 CubeSats. You need to demodulate using USB.	Windows/Raspberry Pi/Linux: <u>FoxTelem</u>	config -b	CubeSatSim.org/b	43490 43491
4	SSTV	Slow Scan TeleVision. This mode transmits stored images in Scottie 2 format which sounds like a series of tones.	Windows: <u>MMSSTV</u> Raspberry Pi/Linux: <u>QSSTV</u>	config -s	CubeSatSim.org/s	43489 43491 43491 43491
5	cw	Continuous Wave or Morse Code. This mode transmits a FM modulated tone at 20 words per minute Morse Code telemetry.	Windows/Raspberry Pi/Linux: fldigi with spreadsheet http://cubesatsim.org/t elem	config -m	CubeSatSim.org/m	434.902 434.902

